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Nonlinear Marangoni convection in bounded layers. 
Part 2. Rectangular cylindrical containers 

By S .  ROSENBLAT, G. M. HOMSY AND S. H. DAVIS 
SHD Associates, Inc., 2735 Simpson St, Evanston, IL 60201, U.S.A. 

(Received 16 June 1981 and in revised form 14 December 1981) 

Attention is confined to roll-cell development and roll-cell interaction appropriate to 
one horizontal dimension larger than either the other horizontal dimension or the 
depth. At simple eigenvalues M,, the roll-cell amplitude and transport fields can be 
obtained. Near those aspect ratios corresponding to double eigenvalues Mc, where two 
roll-cell states of linear theory areequallylikely, thenonlinear theory predicts sequences 
of transitions from one steady convective state to another as the Marangoni number is 
increased. Direct comparisons are made of the results here with those of the previous 
paper for Marangoni convection in circular cylinders. Time-periodic convection is 
possible in certain cases. 

1. Introduction 
In  part 1 of this study (Rosenblat, Davis & Homsy 1982) we discussed Marangoni 

instabilities in a circular cylinder and distinguished between simple eigenvalues and 
double eigenvalues, where secondary bifurcations are possible. 

I n  the present paper, we examine Marangoni instability in rectangular containers. 
As before, we assume that the upper free surface is non-deformable, and the side walls 
are adiabatic and impermeable but ‘slippery ’, which in the rectangular geometry 
corresponds to zero shear stress applied on the boundary. We use the asymptotic theory 
of Rosenblat (1 979) to examine the steady convective states near Mc and how tran- 
sitions from one state to another occur. We limit ourselves to interactions of modes in 
the form of two-dimensional roll-cells, which are predicted for rectangular con- 
tainers having the shorter side comparable to the depth and the longer side larger than 
he depth. Since much of the full development is similar to that in part 1, we give only 
those details which distinguish convection in a rectangular container from convection 
in a circular cylinder. 

2. Formulation 
Consider a viscous liquid, which partially fills a container of rectangular cross- 

section. The mean depth of the liquid is d and a horizontal cross-section has lengths 
a,d and a2d in the x- and y-directions respectively. Hence a, and a2 are the aspect ratios. 
The axis of the cylinder is antiparallel to the direction of gravity, and the upper surface 
of the liquid is open to  an ambient gas. 

The development of the non-dimensional nonlinear disturbance equations and 
boundary conditions parallels that in part 1. Again, in the limit of small capillary 
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number and when the lateral boundaries are adiabatic and impenetrable but ‘ slippery ’ , 
we obtain the following nonlinear problem. 

From equations (2 .7) - (2 .9)  of part 1 

+ (v.  V) v = - V p  -t Q2v + M-lR62, (2 .1 )  

(2 .2 )  

I 
v . v  = 0,  

where M ,  R and Pr are the Marangoni, Rayleigh and Prandtl numbers defined in 
equations (2.16a-c) of part 1. 

The bottom of the box is a rigid perfect conductor, so that 

8 = 0  ( z = O ,  O < x < a , ,  O < y < a 2 ) ,  ( 2 . 4 ~ )  

v =  0 ( z =  0, 0 < x < a,, 0 < y < a2).  (2 .4b )  

Since the capillary number is zero, the upper surface is flat, so that the heat-transfer 
condition is 

( 2 . S a )  
ae 
-+LO = 0 (2 = 1, 0 < x < a,, 0 < y < a2),  az 

and the kinematic condition is 

w = 0  ( z = l ,  O < x < a , ,  O < y < a , ) .  ( 2 . 5 b )  

The conditions of thermocapillarity become 

u,+w,+O, = wZ+w,+O, = 0 ( X  = 1, 0 < x < a,, 0 < 3 < a2). ( 2 . 5 ~ )  

Finally, the ‘slippery ’ side walls reduce in Cartesian co-ordinates to adiabatic, 

( 2 . 6 a )  

( 2 . 6 b )  

impermeable stress-free planes. These conditions take the form 

u = w, = vz = 6, = 0 

v = w, = u, = 6, = 0 

(x = O,a,; 0 < y < a2, 

(y = 0,a2;  0 < x < a,, 

0 < z < l ) ,  

0 < z < 1 ) .  

3. Linear stability problem 
The critical Marangoni number at  which the conduction solution loses stability is 

determined from linearization of the system (2 .1 ) - (2 .3 )  together with the (linear) 
boundary conditions (2 .4) - (2 .6) .  As in part 1, we assume that Mc occurs a t  a state of 
neutral stability, s3 that the governing linearized equations become 

V4w + M-lRV?B = 0,  (3.1 a )  

VzO+ MW = 0. ( 3 . l b )  

System (3 .1 )  plus boundary conditions (2 .4) - (2 .6)  may be solved by seeking separable 

( 3 . 2 a )  

(3 .2b )  

solutions of the form 

W ( X ,  y, 4 = cos rm1774a11 cos rm2T//a21 Y(Z), 

O(x, y, 2) = cos [m,77~/a,l cos [m,Ty/a,l  X(X),  
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FIGURE 1. Stability curves M versus a, for L = 0 at u2 = 0.5. 
The pairs (ml, m,) denote integral number of cycles in (ul, a2). 

with similar definitions for u and v. Here X and Y are the same functions as those in 
part 1. Here m, and m2 run over all non-negative integers. 

When forms (3.2) are substituted into (3.1), an effective wavenumber h appears, 
where 

h2 = [(rn,/a,)2 + ( r n , / ~ , ) ~ ]  m2. (3.3) 

The effects of buoyancy through the Rayleigh number R and the effects of the free 
surface being a poor insulator through the surface Biot number can be explored as in 
part 1. The effects are the same in that increasing R decreases M,, and increasing L 
increases Mc. These results will not be presented here. We shall confine ourselves to 
R = 0 and L = 0. In this case we find that 

(3.4) 
8h2(h - sinh h cosh A )  cosh h 

2M(h) = h2coshh-sinh3h * 

We note that, for an infinite layer, h is the overall wavenumber, which takes on all 
values [0 ,  co). M ( h )  would then have the minimum H, 2: 79-6 for A, N 2. This result 
is due to Pearson (1958). For the present enclosed layer, M ( h )  must be minimized over 
only those admissible h given by (3.3). 

The relationship between the box aspect ratios and the mode of convection, indi- 
cated by the integers (m,) m2), isgiven implicitly by (3.3) and (3.4). We have evaluated 
this relationship for a range of box sizes for all possible modes of convection. The results 
are given in figures 1-6, in which .M is given as a function of a, for fixed values of a2. 
For clarity, modes having large critical Marangoni numbers are not shown. Consider 
first the case of a2 = 0.5 shown in figure 1. As the box size a, increases, the preferred 
mode, i.e. the mode having the lowest critical Marangoni number, changes in a specific 
way. This sequence is among modes for which m2 = 0. Thus we have two-dimensional 
roll cells whose axes are aligned with the shorter dimension of the box. We shall call 
these x-rolls. It is seen that for box sizes a, 2: &m,n, with rn, = 1,2 ,3 ,  . . . , that  h N 2 
and the criticalMarangoninumber is a minimum at thevalueM, N 79.6 appropriate to 
infinite layers. Away from these values, the side walls exert a stabilizing influence, even 
though they are ‘slippery’. While the fact that several box sizes can have the same 
M = M, is presumably an artifact of the use of the slip-wall boundary conditions, the 
existence and progression of preferred modes due to the finite size of the container is not. 

5-2  
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FIGURE 2. Stability curves M versus a,  for L = 0 at a2 = 1.0. 
The pairs (ml, m2) denote integral number of cycles in ( u ~ ,  az). 
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FIGURE 3. Stability curves M versus a, for L = 0 at a2 = 1.5. 
The pairs (ml, m,) denote integral number of cycles in (a,, a2). 

In  the case of buoyancy-driven convection, the dependence of M on box size is 
monotonic but has kinks a t  the points of mode switching (Davis 1967), and the effect 
of side walls is to align the roll axes with the shorter side of the box. This is the same 
progression and alignment as predicted here for a2 = 0-5, but we shall see below that 
the present treatment leads to some predictions of preferred mode orientation that are 
presumably artifacts of the slip-wall boundary conditions. 

To summarize, the curves in figure 1 predict preferred modes consisting of x-rolls, 
and the progression is to add more x-rolls as the box size increases. Of particular 
interest are the aspect ratios at which two modes have the same critical M ,  this is a 
double eigenvalue of the linear theory. 

Figure 2 shows the results for a,  = 1.0. Since the modes with m2 = 0 are unaffected 
by the length a2 the lower curves are identical with those of figure I. We anticipate, 
however, that, as a2 approaches am,, there are two-dimensional rolls with axes aligned 
with the longer side of the box (y-rolls), which might have lower critical Marangoni 
numbers than the x-rolls. This is not yet the case for the (0, I )  mode for the conditions 
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FIGURE 4. Stability curves M versus a, for L = 0 a t  a, = 2.0. 
The pairs (ml, m2) denote integral number of cycles in (ul, az) .  
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FIGURE 5. Stability curves M versus a, for L = 0 at a, = 3.0. 
The pairs (m,, m,) denote integral number of cycles in (u,, a,) .  
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FIGURE 6. Stability curves M versus a, for L = 0 a t  a, = 3.5. 
The pairs (ml, m,) denote integral number of cycles in (ul, az) .  
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FIGURE 7. Stability map for preferred mode as a function of a, and a2. L = 0. The figure is 
symmetrio about a, = a2. The pairs (m,, m,) denote integral number of cycles in (a,, a2). 

of figure 2, but becomes so for the conditions of figure 3. Finally, we note the occurrence 
of more complex three-dimensional modes of convection, e.g. the (1,1) and (2 , l )  modes, 
having Marangoni numbers close to, but above, those for x-rolls. 

Figure 3 gives results for a, = 1.5, and shows several complex features. First we note 
that the (0 , l )  y-roll has M 2: M ,  for this value of a,, independent of a,, and hence 
is often the preferred mode. However, since a, $. &r, there are small ranges of box sizes 
located near a, = trim, for which x-rolls are preferred. We also note that three- 
dimensional modes, e.g. the ( 1 , l )  and (2, l), become closer to being preferred. At 
a, = 2.0 the results shown in figure 4 indicate that the y-rolls (0 ,  1), (0,2) are no 
longer preferred, and the three-dimensional (1 , l )  and ( 2 , l )  modes are preferred over 
x-rolls for some range of values of a, away from a, = $mln. For a, = 3.0 (i.e. close to n) 
figure 5 shows that a situation analogous to that in figure 3 occurs; the y-roll(O,2) has 
M 2: M,, and is preferred for all box sizes a, away from gm,n. Finally, as shown in 
figure 6, as a, increases, the number of modes competing and having M 2: M ,  
increases, and the envelope of these neutral curves becomes nearly the horizontal line 
M = M,. This reflects the diminished effect of the side walls in determining the 
preferred mode. 

The results may be summarized by a map in the (al, a,)-plane of the preferred modes. 
We note that the pattern of preferred modes must be antisymmetric about a, = a,, 
corresponding to a rotation of the co-ordinate system. Thus M(a,, a,) = M(a,, a,), and 
the preferred modes, (m,(a,, a,), m2(a,, a2)) = (m,(a,, a,), m,(a,, a,)). It is clear from the 
previous discussion that this map will be complex, and that, as al and a, become large, 
many modes will have values of the critical Marangoni number close to that for the 
preferred modes. This map is shown in figure 7. With one exception, it is difficult to 
speculate on the degree to which this complexity depends upon the use of slip-wall 
boundary conditions. Complexity of this degree does not occur for buoyancy-driven 
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convection in a box (Davis 1967), but does occur for buoyancy-driven convection in a 
bounded porous medium (Beck 1972). The persistence of y-rolls and z-rolls a t  
a, N &mln, u2 2: Qm2n (ml, m2 = 0, 1,2, . . .) respectively, will not occur if more realistic 
no-slip boundary conditions are applied. Careful study of results similar to those in 
figures 1-6 indicates that much of the complex mode-switching is due to the neutral 
curve for y-rolls (x-rolls), being a horizontal line, intersecting many times the neutral 
curve for other modes. No-slip side-wall conditions do not admit pure x-rolls or y-rolls, 
with the result that the neutral curves for modes that are close to y-rolls, (x-rolls), 
may not exhibit as many intersections. However, this does not imply that the 
bifurcation theory developed below will be necessarily simpler, as these modes may 
continue to be near-multiple eigenvalues of the linear theory. 

4. Eigenfunction expansions 
I n  the nonlinear theory we focus on certain special interactions appropriate to one 

horizontal box dimension being comparable to the depth and the other much larger. In  
particular, we shall take a2 = 1.0, so that only x-rolls are predicted by linear theory. 
It is the interaction of rolls that we shall address. Although we must develop the 
theory for Rayleigh number R =I= 0 for completeness properties of the differential 
system, we shall, with no loss ofgenerality, set R = 0 a t  the end. Hence, pure Marangoni 
instability will be analysed. 

Let us restate the linear stability problem for the case a t  hand: 

V ~ V  - Vp + M-lRB% = 0, ( 4 . 1 ~ )  

Q . v  = 0, (4.16) 

V2B+-Mw = 0, ( 4 . 1 ~ )  
with 

e = u = w = o  (2 = O), (4.1 a) 

ex = u = wx = 0 (x = O,a,). (4. If 1 

e, = w = U,+e, = o ( z  = I) ,  (4 . le)  

The problem is now a two-dimensional problem, since we are interacting only x-rolls; 
hence v, slay = 0. 

For fixed if?.!' the eigenvalues are denoted by Rmj, with m, j = 1,2,  ..., and m is the 
horizontal wavenumber while j is the vertical wavenumber. Define 

A, = mn/u,. 
The eigenfunctions are 

umj = -A;'sinhmxDYmj(z), 

(4.2) 

(4.3a) 

wmi = cosA,xYmj(z), (4.3b) 

(4.3c) emj = cos ~ , x  x ,~(~) ,  
where the Xmj  and Ymj are the eigensolutions of the system (A 1)-(A 4) of part 1.  

The adjoint problem is 
V ~ V *  - vp* +- Ale2 = 0, (4 .4a)  

v.v* = 0,  (4.4b) 
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v2e* + i@-ln~* = 0, (4.4c) 

( 4 . 4 4  

(4.4.f) 

8" = u* = w* = 0 

o:+w; = w* = u; = 0 

(2 = O ) ,  

( x  = O,a,). 

(2 = 1)) (4.4e) 

u* = w*, = 0; = o 
The adjoint eigenfunctions are 

u;j = - h , s i n h , ~ D Y ~ ~ ( z ) ,  (4.5a) 

w;j = hk cos h,x Y&(z), (4.5b) 

eZj = COS ~ , x x ; , ~ ( z ) ,  (4.5c) 

where X * ,  Y* satisfy the system (A 5)-(A 8) of part 1. 
It is worth mentioning a slight difference in the analysis between part 1 and the 

present paper. Here the case (0 ,O) does not correspond to  an allowable mode, but contri- 
butes to  the mean temperature. Hence we first must subtract the mean before using 
the eigenfunction expansion. I n  part 1 the mode rn = 0 was allowable, and all the 
modes m =k 0 as well as rn = 0 contributed to the mean. Hence it was not necessary to  
subtract the mean first, and direct application of the eigenfunction expansion was 
made. 

We now decompose all dependent variables into horizontal mean (i.e. x-mean) plus 
departures from the mean as follows: 

v = ~ + v i ,  B = G+ei, p = p + p i ,  ( 4 . 6 ~ )  

where, for each quantity g ,  
4 F n  g = - J  1 -' gdx. 

a1 0 

For the case R = 0, the equations (2.1)-(2.3) are 

V2v - V p  = MPr-l(v, + (v . V) v}, 

v.v  = 0, 

(4.6b) 

( 4 . 7 4  

(4.7b) 

vw + ivw = iwp, + (v .  v )  el. (4.7c) 

If the forms (4.6) are introduced into system (4.7), we get 

V27 - V@ = MPr-1{5, + (S. V)S + (v' . V) v'}, ( 4 . 8 ~ )  

and 

v.v = 0, 

V28 + Mw = M ( B t  + (5. V) B + (v' . V) e'}, 
(4.8b) 

( 4 . 8 ~ )  

V2v'- Vp' = MFT-~(v~+(v ' .V)T+(V.V)V'+[ (V' .  V)V']C), ( 4 . 9 ~ )  

V . V '  = 0, (4.9b) 

v2e' + ivU?i= M{O; + (vi. v )  B + (7. v )  8' + pi. v )  e'],}, (4.9c) 

where [ ]f denotes the fluctuating part of [ 1. The same boundary conditions hold for 
both systems (4.8) and (4.9). 
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As is well-known, there is no mean velocity field induced by the convection, and thus 

v = 0. ( 4 . 1 0 ~ )  

Equation (4.8 c) then simplifies considerably, and for steady or quasi-static convection, 

e, = M ( ~ v ) .  (4.10b) 

- 

- - 

If these relations are used to simplify (4.7), we obtain 

V2v‘ - Vp’ = MPr-l{v; + [(v’ . V) v’li}, (4.1 1 a) 

(4.1 1 b) 

V28’ + Mw’ = M{8; + Mw’(w’8’) + [(v‘. V) Or]*} .  (4.11 c) 

We now take the scalar product of (4.1 1 a, c) with the adjoint vectors (v;lEj, O z j )  a t  
M = M,, R = Rmi, and integrate over the fluid volume. This gives 

V . V ’  = 0, 

(M-Mc)(8:j~’)- M;1Rzj(w;j8’) = M(8$j81.+Pr-1v&..v;) 

+ M(O$j{[(v’ . V ) ~ ’ ] ~ + M W ‘ ( W ’ ~ ‘ ) } +  P T - ~ v ~ ~ . [ ( v ’ . V ) V ’ ] I )  (4.12) 

for each m and j. Equation (4.12) is the basis for the derivation of the amplitude 
equations, and is analogous to equation (5.19) of part 1.  

5. Simple and double interactions 
5.1. Simple eigenvalue for  ( 1 , O )  

Let us consider an aspect ratio a, = 1.5, which corresponds in figure 2 to a simple 
eigenvalue Mc for convection with (m,, m,) = ( 1 , O ) .  

We find that 
Mc = 79.4, (5.1) 

and by hypothesis R,, = 0. The quadratic interaction of mode 11 generates the 21 mode 
(RZl =+ 0) so the set Y is 

Y = (11,211. ( 5 . 2 ~ )  
We write 

(5.2b) 

and substitute into (4.12). We obtain 

v’) = Al(41,  V l J  + A,(%,, v,,), 

V I A l  = ( M - M , ) A , - 2 1 ,  (5.3a) 

(5.3b) 

V ,  = d;1Mc(6;,8,, + Pr-lv;, . v,,), (5.3c) 

fm = dil(w;lemJ~ ( 5 . 3 4  

v,A2 = - M i l R ,  fz A ,  - Z,,  
when M = M,, where 

d, = ~ ~ ; l W , l ) .  (5.3e) 

We shall not give all the details of the evaluations, since they are parallel to those of 
part 1. After a good deal of algebraic manipulation, we find that, if cc,, a2 and are 
constants, 

2, = a , 4 A z + P , A L  (5.3f)  

2, = C L ~  A:, (5.39) 
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Pr vl x 10-4 w1 x 10-4 

0.1 0.37 5.2 
1.0 0.13 0.64 

10.0 0.10 0.43 
aJ 0.10 0.4 1 

TABLE 1 

and the governing amplitude equation takes the form 

v1A1 = (M-Mc)Al-w,A?.  (5.4) 

The computations of the coefficients have been performed for various values of Prandtl 
number, and some results are shown in Table 1. Since w1 > 0 ,  the convective state 
results from supercritical bifurcation and is stable. 

5.2. Simple e ~ g e n ~ ~ ~ u e ~ o r  ( 2 , O )  

Let us consider an aspect ratio a, = 3.1, which corresponds in figure 2 to a simple 
eigenvalue Mc for convection with (ml, m,) = (2,O). We find that 

Mc = 79.2. (5 .5 )  

Y = {21,41}. (5 .6)  

v,A, = ( M - M c ) A , - ~ , A ~ ,  (5.7) 

There is again a quadratic interaction and the set Y is 

We omit all details and state the final amplitude equation 

where the coefficients have the numerical values given in table 2. Again, w2 > 0,  the 
convective state results from supercritical bifurcation and is stable. 

5.3. Double eigenvalues for ( I ,  0) and (2 ,O)  

Let us consider an aspect ratio a,  = 2.21, which corresponds in figure 2 to a double 
eigenvalue for convection with (ml, m,) = ( 1 , O )  and (m,, m,) = ( 2 , O ) .  We find that 

Mc = 90.2. (5.8) 

The quadratic interaction of modes 11 and 21 generates modes 31 and 41. The set Y is 

Y = {11,21,31,41}. 
We write 

4 

i = l  
(d’,v’) = z; Ai(~il,Vi,), 

and substitute into (4.12). We obtain 

vIAl = (M-MC)A1-21,  

v,A,  = (M-Mc)A, -Z , ,  

Mg’R, f, A, = - Z,, 

M;IR4 f4 A, = - Z,, 

(5.9a) 

(5.9b) 

( 5 . 1 0 ~ )  

(5.10b) 

(5 .10~)  

(5.10d) 
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Pr v2 x 10-4 w2 x 10-3 

0.1 0.44 1.4 
1.0 0.13 0.26 

10.0 0.10 0.25 
a, 0.098 0.25 

TABLE 2 

Pr v, x v2 x a, x a2 x p1 x u1 x u2 x 10-4 w2 x 10-3 

0.1 0.58 3.9 -0.88 1.5 0.18 2.3 1.3 5.0 
1.0 0.23 1.2 -0.34 0.43 0.18 0.33 0-17 0.95 

10.0 0.20 0.90 -0.29 0.32 0.18 0.24 0.12 0.77 
a, 0.20 0.87 -0.29 0.31 0.18 0.23 0.12 0.76 

TABLE 3 

when M = Mc. Here the f 3 ,  f4, R3, R4 and functionals Zl-Z4 are defined in analogous 
way to those in part 1. Again we omit details, and state the final amplitude equations: 

vl A = (M - Mc) A, - a, A1 A 2 - 1 1  A: - ~1 A1 A:, (5.11 a) 

V, A , = ( M  - Mc) A ,  - a, A! - g2 At A ,  - W, A:. (5.11b) 

Numerical values of the coefficients are given in table 3. We analyse the equations 
(5.11) in detail below. 

5.4. Double eigenvalue for (2,O) and (3,O) 

Let us consider an aspect ratio a, = 3.81, which corresponds in figure 2 to a double 
eigenvalue for convection with (ml, m,) = (2,O) and (ml, m,) = (3,O). We find that 

Mc = 82.9. (5.12) 

The quadratic interaction of modes 21 and 31 generates modes 11, 41, 51, 61, so the 
set Y is 

9 = (11,21,31,41,51,61). (5 .13~)  
We write 

(5.13b) 
G 

i = l  
(d ’ ,  v’) = x Ai(Oil, Vi l ) ,  

and substitute into (4.2). We obtain 

v2A2 = (M-Mc)-Z,, (5 .14~)  

v3A3 = ( M - M c ) - Z 3 ,  (5.14b) 

M;lR,f,A, = -2, (n = 1,4,5,6), (5 .14~)  

when M = Mc. Here the f,, R,, 2, are defined in an analogous way to those in part 1. 
Rather than give the details, we state the final amplitude equations: 

v2A2 = ( M  - M,) A ,  - w,Ai - T ~  A ,A& ( 5 . 1 5 ~ )  

v3A3 = ( M  - Mc) L ~ ~ - T ~ A % A ~ - W ~ A : ,  (5.15b) 

and the coefficients are given in table 4. 
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PT V, x 10-4 v3  x 10-3 O, x 10-4 7, x 10-3 w 3  x 10-3 T 3  x 10-3 

0.1 0.46 3.6 1.4 - 7.8 5.1 6.7 
1.0 0.18 1.2 0-17 - 1.1 0.85 1.2 

10.0 0.15 0.92 0.12 - 0.76 0.66 0.89 
ca 0.14 0.89 0.11 - 0.72 0.64 0.86 

TABLE 4 

* l  t 
I 

A 2  t 

I 7:: ................ :.... ............................ q 

T2 
S 

FIGURE 8. The bifurcation diagram for a2 = 1.5, and a, slightly less than 3.1, wnere 
A = M2 - MI. Solid lines represent stable branches while dotted lines represent unstable branches. 

6. Analysis and discussion 
In the cases of $5 5.1 and 5.2, the self-interaction of roll cells (1 ,O)  and ( 2 , O )  is 

considered. In both cases, the interaction is governed by single amplitude equations 
containing cubic but no quadratic nonlinearities. These are (5.4) and (5.7) respectively. 
The values v1 and v2, depending on Prandtl number Pr, are values from the linear 
stability problem, and for given h of (3.3) are identical here with those of part 1. 
Careful comparison shows this. The values w1 and w2 of (5.4) and (5.7) are always 
positive, so that these simple self-interactions always correspond to stable supercritical 
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FIGURE 9. The bifurcation diagrams for a2 = 1-5, and a, slightly greater than 3-1, where 
A = MI - N2. Solid lines represent stable branches while dotted lines represent unstablebranches. 
The curly lines represent time-periodic bifurcations. The orientations of these branches and their 
stability properties are unknown. 

bifurcation. It is easy to show that for any values (m,, m2) + (0,O) indicated in figure 7 
self-interactions always have amplitude equations of the same form, i.e, 

vA = (2M-Mc)A-WA3, (6.1) 

where v > 0. Presumably, o > 0 for any of these, so that stable, supercritical bifur- 
cation is always predicted for self-interactions. This is likewise true in the case of the 
circular container of part 1 for m + 0. It is only for the (m = 0) axisymmetric mode 
that (6.1) is augmented by a quadratic term. Thus the axisymmetric mode bifurcates 
subcritically, and so has snap-through and hysteresis properties as discussed in part 1. 

In the case of 4 5.3 the interaction of modes (1,O) and ( 2 , O )  is examined near the 
double eigenvalue at a, = 3.1 of figure 2. The governing amplitude equations (5.11) 
are a pair of coupled equations identical in form with equations (7.10) and (7.1 1) of 
part 1, which govern the interaction of modes m = 1 and m = 2 near their double 
eigenvalue. Again, the vi are linear-theory values that depend on Pr and A ,  but not on 
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FIGURE 10. The bifurcation diagrams for az = 1.5, and a, slightly less than 3-81, where 
A = M3 - M,. Solid lines represent stable branches while dotted lines represent unstable branches. 

the cylinder geometry. Although the coefficients are not identical in the two cases, 
all of the qualitative predictions are. Figure 8 shows the results of our analysis of 
(7.10)-(7.11) for a, < 3.1. The mixed mode containing both modes (1, 0) and (2, 0) 
bifurcates supercritically at M,, and, as M is further increased, A ,  follows either 0, UT, 
or 0, LTl, while A ,  follows 02T,. At a value of 7 = M - M, greater than h = M, - M,, 
there is secondary bifurcation t.0 a pure mode m = 2 .  This branch is labelled T,S. 

Figure 9 shows the situation for a, > 3-1. Here, as M crosses Me, the pure mode 
m = 2 bifurcates supercritically and follows either curve 0,T2 or 0,s. However, for 
7 = M - M2 less than A = MI - M2, the pure mode persists but only on the branch 0,s. 
Again, there is the possibility of branch O,T, bifurcating first to the mixed mode and 
then to time-periodic convection. The amplitude equations (5.1 I )  are in form identical 
with those governing hexagonal cells as predicted by Scanlon & Segel (1967) for 
horizontally unbounded layers. However, since the contexts are quite different, 
the coefficients are quite different. Scanlon & Segel find subcritical hexagons. We find 
only supercritical convection of mixed mode or pure mode m = 2. 

In  the case of $5.4, the interaction of modes ( 2 , O )  and (3,O) is examined near the 
double eigenvalue a t  a, = 3-81 of figure 2. The governing amplitude equations (5.15) 
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FIGURE 11. The bifurcation diagrams for a2 = 1.5, and a, slightly greater than 3.81 where 
A = M,-M,. Solid lines represent stable branches while dotted lines represent unstable 
branches. 

are a pair of coupled equations. Again, vi are linear-theory values that depend on Pr 
and A, but not on the cylinder geometry. Figure 10 shows the situation for a, < 3-81. 
The pure mode (2,O) bifurcates supercritically a t  M,, 7 = M -  M2 = 0, and steady 
convection follows either branch OX as M increases. At a value of 7 > A s M, - M, 
there is secondary bifurcation to the mixed mode containing both modes ( 2 , O )  and 
(3 ,0) ,  and, as M increases further, A ,  follows either branch XU and A ,  follows a 
branch ST.  Figure 1 1  shows the situation for a,  > 3-81. Here, a t  M,, the pure mode 
(3,O) bifurcates supercritically and follows either branch OX until 

7 E M - M 3  = 7 s  < A M2-M3. 

Here there is secondary bifurcation to a mixed mode in which A ,  follows either S U ,  
and A ,  follows an ST. The sequence of events here, near a = 3.81, has no counterpart 
in part 1, since there was no double eigenvalue there for modes m = 2 and m = 3. 
However, the amplitude equations (5.15) have the form typical of Rayleigh-BBnard 
convection in containers, as discussed by Rosenblat (1982). Figures 10 and 1 1  are 
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qualitatively similar to Rosenblat’s results, which apply to the buoyancy-driven 
convection. 

In summary, we again find that interactions near double eigenvalues give qualitative 
features that strongly distinguish behaviour for aspect ratios on one side from 
behaviour on the other side. Parallels as well as differences in behaviour exist between 
the circular and rectangular cases. 

This work was supported by NASA-Lewis Research Center through Contract 
no. NAS3-22274. 
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